ECS 452: Additional Example

1. Consider a BSC whose crossover probability is $p=0.2$. A channel code uses the following codebook:

a. Suppose the codeword 011 was transmitted.

What is the probability that the channel output is \underline{z}_{101} ? $y=101$

$$
P[\underline{Y}=101 \mid \underline{x}=011]=Q(101 \mid 011)=0.2 \times 0.2 \times 0.8=0.032
$$

b. Assume that the two possibilities of the info-bit S are equally likely. Suppose we observed 101 at the output of this channel.
i. What is the probability that the codeword 011 was transmitted?

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

$$
P[\underline{Y}=011]=P(B)=P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)
$$

ii. What is the probability that the codeword 100 was transmitted?

$$
P[\underline{x}=100 \quad \mid \underline{Y}=101]
$$

iii. At the receiver, if a MAP decoder is used, find the decoded codeword and the corresponding decoded info-bit.

x	$d(\underline{x}, 101)$
011	2
100	$1)^{k} \min$

$$
\begin{aligned}
& \hat{x}_{\text {MAP }}(101)=100 \\
& \hat{\Delta}_{\text {MAP }}(101)=1
\end{aligned}
$$

